///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
///             By making use of the Software for military purposes, you choose to make
///             a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_simd_vec4
/// @file glm/gtx/simd_vec4.hpp
/// @date 2009-05-07 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4
/// @ingroup gtx
///
/// @brief SIMD implementation of vec4 type.
///
/// <glm/gtx/simd_vec4.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////

#pragma once

// Dependency:
#include "../glm.hpp"

#if(GLM_ARCH != GLM_ARCH_PURE)

#if(GLM_ARCH & GLM_ARCH_SSE2)
#       include "../detail/intrinsic_common.hpp"
#       include "../detail/intrinsic_geometric.hpp"
#       include "../detail/intrinsic_integer.hpp"
#else
#       error "GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics"
#endif

#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
#       pragma message("GLM: GLM_GTX_simd_vec4 extension included")
#endif


// Warning silencer for nameless struct/union.
#if (GLM_COMPILER & GLM_COMPILER_VC)
#       pragma warning(push)
#       pragma warning(disable:4201)   // warning C4201: nonstandard extension used : nameless struct/union
#endif

namespace glm
{
        enum comp
        {
                X = 0,
                R = 0,
                S = 0,
                Y = 1,
                G = 1,
                T = 1,
                Z = 2,
                B = 2,
                P = 2,
                W = 3,
                A = 3,
                Q = 3
        };

}//namespace glm

namespace glm{
namespace detail
{
        /// 4-dimensional vector implemented using SIMD SEE intrinsics.
        /// \ingroup gtx_simd_vec4
        GLM_ALIGNED_STRUCT(16) fvec4SIMD
        {
                typedef __m128 value_type;
                typedef std::size_t size_type;
                static size_type value_size();

                typedef fvec4SIMD type;
                typedef tvec4<bool, highp> bool_type;

#ifdef GLM_SIMD_ENABLE_XYZW_UNION
                union
                {
                        __m128 Data;
                        struct {float x, y, z, w;};
                };
#else
                __m128 Data;
#endif

                //////////////////////////////////////
                // Implicit basic constructors

                fvec4SIMD();
                fvec4SIMD(__m128 const & Data);
                fvec4SIMD(fvec4SIMD const & v);

                //////////////////////////////////////
                // Explicit basic constructors

                explicit fvec4SIMD(
                        ctor);
                explicit fvec4SIMD(
                        float const & s);
                explicit fvec4SIMD(
                        float const & x,
                        float const & y,
                        float const & z,
                        float const & w);
                explicit fvec4SIMD(
                        vec4 const & v);

                ////////////////////////////////////////
                //// Conversion vector constructors

                fvec4SIMD(vec2 const & v, float const & s1, float const & s2);
                fvec4SIMD(float const & s1, vec2 const & v, float const & s2);
                fvec4SIMD(float const & s1, float const & s2, vec2 const & v);
                fvec4SIMD(vec3 const & v, float const & s);
                fvec4SIMD(float const & s, vec3 const & v);
                fvec4SIMD(vec2 const & v1, vec2 const & v2);
                //fvec4SIMD(ivec4SIMD const & v);

                //////////////////////////////////////
                // Unary arithmetic operators

                fvec4SIMD& operator= (fvec4SIMD const & v);
                fvec4SIMD& operator+=(fvec4SIMD const & v);
                fvec4SIMD& operator-=(fvec4SIMD const & v);
                fvec4SIMD& operator*=(fvec4SIMD const & v);
                fvec4SIMD& operator/=(fvec4SIMD const & v);

                fvec4SIMD& operator+=(float const & s);
                fvec4SIMD& operator-=(float const & s);
                fvec4SIMD& operator*=(float const & s);
                fvec4SIMD& operator/=(float const & s);

                fvec4SIMD& operator++();
                fvec4SIMD& operator--();

                //////////////////////////////////////
                // Swizzle operators

                template <comp X, comp Y, comp Z, comp W>
                fvec4SIMD& swizzle();
                template <comp X, comp Y, comp Z, comp W>
                fvec4SIMD swizzle() const;
                template <comp X, comp Y, comp Z>
                fvec4SIMD swizzle() const;
                template <comp X, comp Y>
                fvec4SIMD swizzle() const;
                template <comp X>
                fvec4SIMD swizzle() const;
        };
}//namespace detail

        typedef glm::detail::fvec4SIMD simdVec4;

        /// @addtogroup gtx_simd_vec4
        /// @{

        //! Convert a simdVec4 to a vec4.
        /// @see gtx_simd_vec4
        vec4 vec4_cast(
                detail::fvec4SIMD const & x);

        //! Returns x if x >= 0; otherwise, it returns -x.
        /// @see gtx_simd_vec4
        detail::fvec4SIMD abs(detail::fvec4SIMD const & x);

        //! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.
        /// @see gtx_simd_vec4
        detail::fvec4SIMD sign(detail::fvec4SIMD const & x);

        //! Returns a value equal to the nearest integer that is less then or equal to x.
        /// @see gtx_simd_vec4
        detail::fvec4SIMD floor(detail::fvec4SIMD const & x);

        //! Returns a value equal to the nearest integer to x
        //! whose absolute value is not larger than the absolute value of x.
        /// @see gtx_simd_vec4
        detail::fvec4SIMD trunc(detail::fvec4SIMD const & x);

        //! Returns a value equal to the nearest integer to x.
        //! The fraction 0.5 will round in a direction chosen by the
        //! implementation, presumably the direction that is fastest.
        //! This includes the possibility that round(x) returns the
        //! same value as roundEven(x) for all values of x.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD round(detail::fvec4SIMD const & x);

        //! Returns a value equal to the nearest integer to x.
        //! A fractional part of 0.5 will round toward the nearest even
        //! integer. (Both 3.5 and 4.5 for x will return 4.0.)
        ///
        /// @see gtx_simd_vec4
        //detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x);

        //! Returns a value equal to the nearest integer
        //! that is greater than or equal to x.
        /// @see gtx_simd_vec4
        detail::fvec4SIMD ceil(detail::fvec4SIMD const & x);

        //! Return x - floor(x).
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD fract(detail::fvec4SIMD const & x);

        //! Modulus. Returns x - y * floor(x / y)
        //! for each component in x using the floating point value y.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD mod(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & y);

        //! Modulus. Returns x - y * floor(x / y)
        //! for each component in x using the floating point value y.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD mod(
                detail::fvec4SIMD const & x,
                float const & y);

        //! Returns the fractional part of x and sets i to the integer
        //! part (as a whole number floating point value). Both the
        //! return value and the output parameter will have the same
        //! sign as x.
        //! (From GLM_GTX_simd_vec4 extension, common function)
        //detail::fvec4SIMD modf(
        //      detail::fvec4SIMD const & x,
        //      detail::fvec4SIMD & i);

        //! Returns y if y < x; otherwise, it returns x.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD min(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & y);

        detail::fvec4SIMD min(
                detail::fvec4SIMD const & x,
                float const & y);

        //! Returns y if x < y; otherwise, it returns x.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD max(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & y);

        detail::fvec4SIMD max(
                detail::fvec4SIMD const & x,
                float const & y);

        //! Returns min(max(x, minVal), maxVal) for each component in x
        //! using the floating-point values minVal and maxVal.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD clamp(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & minVal,
                detail::fvec4SIMD const & maxVal);

        detail::fvec4SIMD clamp(
                detail::fvec4SIMD const & x,
                float const & minVal,
                float const & maxVal);

        //! \return If genTypeU is a floating scalar or vector:
        //! Returns x * (1.0 - a) + y * a, i.e., the linear blend of
        //! x and y using the floating-point value a.
        //! The value for a is not restricted to the range [0, 1].
        //!
        //! \return If genTypeU is a boolean scalar or vector:
        //! Selects which vector each returned component comes
        //! from. For a component of a that is false, the
        //! corresponding component of x is returned. For a
        //! component of a that is true, the corresponding
        //! component of y is returned. Components of x and y that
        //! are not selected are allowed to be invalid floating point
        //! values and will have no effect on the results. Thus, this
        //! provides different functionality than
        //! genType mix(genType x, genType y, genType(a))
        //! where a is a Boolean vector.
        //!
        //! From GLSL 1.30.08 specification, section 8.3
        //!
        //! \param[in]  x Floating point scalar or vector.
        //! \param[in]  y Floating point scalar or vector.
        //! \param[in]  a Floating point or boolean scalar or vector.
        //!
        /// \todo Test when 'a' is a boolean.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD mix(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & y,
                detail::fvec4SIMD const & a);

        //! Returns 0.0 if x < edge, otherwise it returns 1.0.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD step(
                detail::fvec4SIMD const & edge,
                detail::fvec4SIMD const & x);

        detail::fvec4SIMD step(
                float const & edge,
                detail::fvec4SIMD const & x);

        //! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
        //! performs smooth Hermite interpolation between 0 and 1
        //! when edge0 < x < edge1. This is useful in cases where
        //! you would want a threshold function with a smooth
        //! transition. This is equivalent to:
        //! genType t;
        //! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1);
        //! return t * t * (3 - 2 * t);
        //! Results are undefined if edge0 >= edge1.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD smoothstep(
                detail::fvec4SIMD const & edge0,
                detail::fvec4SIMD const & edge1,
                detail::fvec4SIMD const & x);

        detail::fvec4SIMD smoothstep(
                float const & edge0,
                float const & edge1,
                detail::fvec4SIMD const & x);

        //! Returns true if x holds a NaN (not a number)
        //! representation in the underlying implementation's set of
        //! floating point representations. Returns false otherwise,
        //! including for implementations with no NaN
        //! representations.
        ///
        /// @see gtx_simd_vec4
        //bvec4 isnan(detail::fvec4SIMD const & x);

        //! Returns true if x holds a positive infinity or negative
        //! infinity representation in the underlying implementation's
        //! set of floating point representations. Returns false
        //! otherwise, including for implementations with no infinity
        //! representations.
        ///
        /// @see gtx_simd_vec4
        //bvec4 isinf(detail::fvec4SIMD const & x);

        //! Returns a signed or unsigned integer value representing
        //! the encoding of a floating-point value. The floatingpoint
        //! value's bit-level representation is preserved.
        ///
        /// @see gtx_simd_vec4
        //detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value);

        //! Returns a floating-point value corresponding to a signed
        //! or unsigned integer encoding of a floating-point value.
        //! If an inf or NaN is passed in, it will not signal, and the
        //! resulting floating point value is unspecified. Otherwise,
        //! the bit-level representation is preserved.
        ///
        /// @see gtx_simd_vec4
        //detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value);

        //! Computes and returns a * b + c.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD fma(
                detail::fvec4SIMD const & a,
                detail::fvec4SIMD const & b,
                detail::fvec4SIMD const & c);

        //! Splits x into a floating-point significand in the range
        //! [0.5, 1.0) and an integral exponent of two, such that:
        //! x = significand * exp(2, exponent)
        //! The significand is returned by the function and the
        //! exponent is returned in the parameter exp. For a
        //! floating-point value of zero, the significant and exponent
        //! are both zero. For a floating-point value that is an
        //! infinity or is not a number, the results are undefined.
        ///
        /// @see gtx_simd_vec4
        //detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp);

        //! Builds a floating-point number from x and the
        //! corresponding integral exponent of two in exp, returning:
        //! significand * exp(2, exponent)
        //! If this product is too large to be represented in the
        //! floating-point type, the result is undefined.
        ///
        /// @see gtx_simd_vec4
        //detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp);

        //! Returns the length of x, i.e., sqrt(x * x).
        ///
        /// @see gtx_simd_vec4
        float length(
                detail::fvec4SIMD const & x);

        //! Returns the length of x, i.e., sqrt(x * x).
        //! Less accurate but much faster than simdLength.
        ///
        /// @see gtx_simd_vec4
        float fastLength(
                detail::fvec4SIMD const & x);

        //! Returns the length of x, i.e., sqrt(x * x).
        //! Slightly more accurate but much slower than simdLength.
        ///
        /// @see gtx_simd_vec4
        float niceLength(
                detail::fvec4SIMD const & x);

        //! Returns the length of x, i.e., sqrt(x * x).
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD length4(
                detail::fvec4SIMD const & x);

        //! Returns the length of x, i.e., sqrt(x * x).
        //! Less accurate but much faster than simdLength4.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD fastLength4(
                detail::fvec4SIMD const & x);

        //! Returns the length of x, i.e., sqrt(x * x).
        //! Slightly more accurate but much slower than simdLength4.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD niceLength4(
                detail::fvec4SIMD const & x);

        //! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
        ///
        /// @see gtx_simd_vec4
        float distance(
                detail::fvec4SIMD const & p0,
                detail::fvec4SIMD const & p1);

        //! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD distance4(
                detail::fvec4SIMD const & p0,
                detail::fvec4SIMD const & p1);

        //! Returns the dot product of x and y, i.e., result = x * y.
        ///
        /// @see gtx_simd_vec4
        float simdDot(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & y);

        //! Returns the dot product of x and y, i.e., result = x * y.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD dot4(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & y);

        //! Returns the cross product of x and y.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD cross(
                detail::fvec4SIMD const & x,
                detail::fvec4SIMD const & y);

        //! Returns a vector in the same direction as x but with length of 1.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD normalize(
                detail::fvec4SIMD const & x);

        //! Returns a vector in the same direction as x but with length of 1.
        //! Less accurate but much faster than simdNormalize.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD fastNormalize(
                detail::fvec4SIMD const & x);

        //! If dot(Nref, I) < 0.0, return N, otherwise, return -N.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD simdFaceforward(
                detail::fvec4SIMD const & N,
                detail::fvec4SIMD const & I,
                detail::fvec4SIMD const & Nref);

        //! For the incident vector I and surface orientation N,
        //! returns the reflection direction : result = I - 2.0 * dot(N, I) * N.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD reflect(
                detail::fvec4SIMD const & I,
                detail::fvec4SIMD const & N);

        //! For the incident vector I and surface normal N,
        //! and the ratio of indices of refraction eta,
        //! return the refraction vector.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD refract(
                detail::fvec4SIMD const & I,
                detail::fvec4SIMD const & N,
                float const & eta);

        //! Returns the positive square root of x.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD sqrt(
                detail::fvec4SIMD const & x);

        //! Returns the positive square root of x with the nicest quality but very slow.
        //! Slightly more accurate but much slower than simdSqrt.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD niceSqrt(
                detail::fvec4SIMD const & x);

        //! Returns the positive square root of x
        //! Less accurate but much faster than sqrt.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD fastSqrt(
                detail::fvec4SIMD const & x);

        //! Returns the reciprocal of the positive square root of x.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD inversesqrt(
                detail::fvec4SIMD const & x);

        //! Returns the reciprocal of the positive square root of x.
        //! Faster than inversesqrt but less accurate.
        ///
        /// @see gtx_simd_vec4
        detail::fvec4SIMD fastInversesqrt(
                detail::fvec4SIMD const & x);

        /// @}
}//namespace glm

#include "simd_vec4.inl"

#if (GLM_COMPILER & GLM_COMPILER_VC)
#       pragma warning(pop)
#endif

#endif//(GLM_ARCH != GLM_ARCH_PURE)