///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
/// 
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
/// 
/// Restrictions:
///             By making use of the Software for military purposes, you choose to make
///             a Bunny unhappy.
/// 
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_bitfield
/// @file glm/gtc/bitfield.inl
/// @date 2011-10-14 / 2012-01-25
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////

namespace glm{
namespace detail
{
        template <typename PARAM, typename RET>
        GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y);

        template <typename PARAM, typename RET>
        GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);

        template <typename PARAM, typename RET>
        GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);

        template <>
        GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
        {
                glm::uint16 REG1(x);
                glm::uint16 REG2(y);

                REG1 = ((REG1 <<  4) | REG1) & glm::uint16(0x0F0F);
                REG2 = ((REG2 <<  4) | REG2) & glm::uint16(0x0F0F);

                REG1 = ((REG1 <<  2) | REG1) & glm::uint16(0x3333);
                REG2 = ((REG2 <<  2) | REG2) & glm::uint16(0x3333);

                REG1 = ((REG1 <<  1) | REG1) & glm::uint16(0x5555);
                REG2 = ((REG2 <<  1) | REG2) & glm::uint16(0x5555);

                return REG1 | (REG2 << 1);
        }

        template <>
        GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
        {
                glm::uint32 REG1(x);
                glm::uint32 REG2(y);

                REG1 = ((REG1 <<  8) | REG1) & glm::uint32(0x00FF00FF);
                REG2 = ((REG2 <<  8) | REG2) & glm::uint32(0x00FF00FF);

                REG1 = ((REG1 <<  4) | REG1) & glm::uint32(0x0F0F0F0F);
                REG2 = ((REG2 <<  4) | REG2) & glm::uint32(0x0F0F0F0F);

                REG1 = ((REG1 <<  2) | REG1) & glm::uint32(0x33333333);
                REG2 = ((REG2 <<  2) | REG2) & glm::uint32(0x33333333);

                REG1 = ((REG1 <<  1) | REG1) & glm::uint32(0x55555555);
                REG2 = ((REG2 <<  1) | REG2) & glm::uint32(0x55555555);

                return REG1 | (REG2 << 1);
        }

        template <>
        GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
        {
                glm::uint64 REG1(x);
                glm::uint64 REG2(y);

                REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
                REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);

                REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
                REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);

                REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
                REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);

                REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333);
                REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333);

                REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555);
                REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555);

                return REG1 | (REG2 << 1);
        }

        template <>
        GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z)
        {
                glm::uint32 REG1(x);
                glm::uint32 REG2(y);
                glm::uint32 REG3(z);

                REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF);
                REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF);
                REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF);

                REG1 = ((REG1 <<  8) | REG1) & glm::uint32(0xF00F00F00F00F00F);
                REG2 = ((REG2 <<  8) | REG2) & glm::uint32(0xF00F00F00F00F00F);
                REG3 = ((REG3 <<  8) | REG3) & glm::uint32(0xF00F00F00F00F00F);

                REG1 = ((REG1 <<  4) | REG1) & glm::uint32(0x30C30C30C30C30C3);
                REG2 = ((REG2 <<  4) | REG2) & glm::uint32(0x30C30C30C30C30C3);
                REG3 = ((REG3 <<  4) | REG3) & glm::uint32(0x30C30C30C30C30C3);

                REG1 = ((REG1 <<  2) | REG1) & glm::uint32(0x9249249249249249);
                REG2 = ((REG2 <<  2) | REG2) & glm::uint32(0x9249249249249249);
                REG3 = ((REG3 <<  2) | REG3) & glm::uint32(0x9249249249249249);

                return REG1 | (REG2 << 1) | (REG3 << 2);
        }
                
        template <>
        GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z)
        {
                glm::uint64 REG1(x);
                glm::uint64 REG2(y);
                glm::uint64 REG3(z);

                REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
                REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
                REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);

                REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
                REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
                REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);

                REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
                REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
                REG3 = ((REG3 <<  8) | REG3) & glm::uint64(0xF00F00F00F00F00F);

                REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
                REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
                REG3 = ((REG3 <<  4) | REG3) & glm::uint64(0x30C30C30C30C30C3);

                REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x9249249249249249);
                REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x9249249249249249);
                REG3 = ((REG3 <<  2) | REG3) & glm::uint64(0x9249249249249249);

                return REG1 | (REG2 << 1) | (REG3 << 2);
        }

        template <>
        GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
        {
                glm::uint64 REG1(x);
                glm::uint64 REG2(y);
                glm::uint64 REG3(z);

                REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
                REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
                REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);

                REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
                REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
                REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);

                REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
                REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
                REG3 = ((REG3 <<  8) | REG3) & glm::uint64(0xF00F00F00F00F00F);

                REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
                REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
                REG3 = ((REG3 <<  4) | REG3) & glm::uint64(0x30C30C30C30C30C3);

                REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x9249249249249249);
                REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x9249249249249249);
                REG3 = ((REG3 <<  2) | REG3) & glm::uint64(0x9249249249249249);

                return REG1 | (REG2 << 1) | (REG3 << 2);
        }

        template <>
        GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
        {
                glm::uint32 REG1(x);
                glm::uint32 REG2(y);
                glm::uint32 REG3(z);
                glm::uint32 REG4(w);

                REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F);
                REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F);
                REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F);
                REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F);

                REG1 = ((REG1 <<  6) | REG1) & glm::uint32(0x0303030303030303);
                REG2 = ((REG2 <<  6) | REG2) & glm::uint32(0x0303030303030303);
                REG3 = ((REG3 <<  6) | REG3) & glm::uint32(0x0303030303030303);
                REG4 = ((REG4 <<  6) | REG4) & glm::uint32(0x0303030303030303);

                REG1 = ((REG1 <<  3) | REG1) & glm::uint32(0x1111111111111111);
                REG2 = ((REG2 <<  3) | REG2) & glm::uint32(0x1111111111111111);
                REG3 = ((REG3 <<  3) | REG3) & glm::uint32(0x1111111111111111);
                REG4 = ((REG4 <<  3) | REG4) & glm::uint32(0x1111111111111111);

                return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
        }

        template <>
        GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
        {
                glm::uint64 REG1(x);
                glm::uint64 REG2(y);
                glm::uint64 REG3(z);
                glm::uint64 REG4(w);

                REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF);
                REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF);
                REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF);
                REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF);

                REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F);
                REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F);
                REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F);
                REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F);

                REG1 = ((REG1 <<  6) | REG1) & glm::uint64(0x0303030303030303);
                REG2 = ((REG2 <<  6) | REG2) & glm::uint64(0x0303030303030303);
                REG3 = ((REG3 <<  6) | REG3) & glm::uint64(0x0303030303030303);
                REG4 = ((REG4 <<  6) | REG4) & glm::uint64(0x0303030303030303);

                REG1 = ((REG1 <<  3) | REG1) & glm::uint64(0x1111111111111111);
                REG2 = ((REG2 <<  3) | REG2) & glm::uint64(0x1111111111111111);
                REG3 = ((REG3 <<  3) | REG3) & glm::uint64(0x1111111111111111);
                REG4 = ((REG4 <<  3) | REG4) & glm::uint64(0x1111111111111111);

                return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
        }
}//namespace detail

        template <typename genIUType>
        GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits)
        {
                GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values");

                return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1);
        }

        template <typename T, precision P, template <typename, precision> class vecIUType>
        GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const & v)
        {
                GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values");

                return detail::functor1<T, T, P, vecIUType>::call(mask, v);
        }

        template <typename genIType>
        GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift)
        {
                GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values");

                int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
                return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift));
        }

        template <typename T, precision P, template <typename, precision> class vecType>
        GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift)
        {
                GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values");

                int const BitSize = static_cast<int>(sizeof(T) * 8);
                return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift));
        }

        template <typename genIType>
        GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift)
        {
                GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values");

                int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
                return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift));
        }

        template <typename T, precision P, template <typename, precision> class vecType>
        GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift)
        {
                GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values");

                int const BitSize = static_cast<int>(sizeof(T) * 8);
                return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift));
        }

        template <typename genIUType>
        GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount)
        {
                return Value | static_cast<genIUType>(mask(BitCount) << FirstBit);
        }

        template <typename T, precision P, template <typename, precision> class vecType>
        GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount)
        {
                return Value | static_cast<T>(mask(BitCount) << FirstBit);
        }

        template <typename genIUType>
        GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount)
        {
                return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit));
        }

        template <typename T, precision P, template <typename, precision> class vecType>
        GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount)
        {
                return Value & static_cast<T>(~(mask(BitCount) << FirstBit));
        }

        GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y)
        {
                union sign8
                {
                        int8 i;
                        uint8 u;
                } sign_x, sign_y;

                union sign16
                {
                        int16 i;
                        uint16 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y)
        {
                return detail::bitfieldInterleave<uint8, uint16>(x, y);
        }

        GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y)
        {
                union sign16
                {
                        int16 i;
                        uint16 u;
                } sign_x, sign_y;

                union sign32
                {
                        int32 i;
                        uint32 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y)
        {
                return detail::bitfieldInterleave<uint16, uint32>(x, y);
        }

        GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y)
        {
                union sign32
                {
                        int32 i;
                        uint32 u;
                } sign_x, sign_y;

                union sign64
                {
                        int64 i;
                        uint64 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y)
        {
                return detail::bitfieldInterleave<uint32, uint64>(x, y);
        }

        GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z)
        {
                union sign8
                {
                        int8 i;
                        uint8 u;
                } sign_x, sign_y, sign_z;

                union sign32
                {
                        int32 i;
                        uint32 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                sign_z.i = z;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
        {
                return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
        }

        GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z)
        {
                union sign16
                {
                        int16 i;
                        uint16 u;
                } sign_x, sign_y, sign_z;

                union sign64
                {
                        int64 i;
                        uint64 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                sign_z.i = z;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
        {
                return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
        }

        GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z)
        {
                union sign16
                {
                        int32 i;
                        uint32 u;
                } sign_x, sign_y, sign_z;

                union sign64
                {
                        int64 i;
                        uint64 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                sign_z.i = z;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
        {
                return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
        }

        GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
        {
                union sign8
                {
                        int8 i;
                        uint8 u;
                } sign_x, sign_y, sign_z, sign_w;

                union sign32
                {
                        int32 i;
                        uint32 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                sign_z.i = z;
                sign_w.i = w;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
        {
                return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w);
        }

        GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
        {
                union sign16
                {
                        int16 i;
                        uint16 u;
                } sign_x, sign_y, sign_z, sign_w;

                union sign64
                {
                        int64 i;
                        uint64 u;
                } result;

                sign_x.i = x;
                sign_y.i = y;
                sign_z.i = z;
                sign_w.i = w;
                result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);

                return result.i;
        }

        GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
        {
                return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w);
        }
}//namespace glm